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Figure 1: Our method learns to embed a human head image into a semantics-aware volumetric
representation based on a large collection of in-the-wild talking head videos annotated by an off-
the-shelf point tracker (left). The embeddings can be estimated in a feedforward way and used
for downstream applications, such as monocular tracking (right), stereo reconstruction, and many
others.

ABSTRACT

We propose DenseMarks – a new learned representation for human heads, en-
abling high-quality dense correspondences of human head images. For a 2D im-
age of a human head, a Vision Transformer network predicts a 3D embedding for
each pixel, which corresponds to a location in a 3D canonical unit cube. In order
to train our network, we collect a dataset of pairwise point matches, estimated
by a state-of-the-art point tracker over a collection of diverse in-the-wild talking
heads videos, and guide the mapping via a contrastive loss, encouraging matched
points to have close embeddings. We further employ multi-task learning with face
landmarks and segmentation constraints, as well as imposing spatial continuity
of embeddings through latent cube features, which results in an interpretable and
queryable canonical space. The representation can be used for finding common
semantic parts, face/head tracking, and stereo reconstruction. Due to the strong
supervision, our method is robust to pose variations and covers the entire head, in-
cluding hair. Additionally, the canonical space bottleneck makes sure the obtained
representations are consistent across diverse poses and individuals. We demon-
strate state-of-the-art results in geometry-aware point matching and monocular
head tracking with 3D Morphable Models. The code and the model checkpoint
will be made available to the public.

1 INTRODUCTION

Modern applications in augmented and virtual reality (AR/VR), telecommunications, computer
gaming, and movie production require building models of humans at an increasingly demanding
level of quality. Flaws in face and head modeling are particularly noticeable to human users (Haxby
et al., 2000; Blanz & Vetter, 1999), so most human head modeling pipelines rely on head track-
ing (Thies et al., 2016; Giebenhain et al., 2024; Qian et al., 2024) to identify and maintain cor-
respondences between head feature locations. Existing methods excel at features with consistent
statistical regularities across subjects. For instance, sparse facial landmark tracking (Lugaresi et al.,
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2019a; Cao et al., 2019) aims to follow the locations of unambiguous but isolated facial features
shared by typical faces, such as the outlines of the eyes, nose line, or mouth corners. Similarly, para-
metric 3D model estimation and tracking (Blanz & Vetter, 1999; Li et al., 2017b; Dai et al., 2020)
assumes that most face and head geometries follow a statistical shape model and can be represented
by a shared, comparatively simple mesh template.

However, features like hair, accessories, and clothing are often omitted from head tracking, which
typically focuses on landmarks or skin. In a typical video capture, individual landmarks or entire
head regions easily become occluded due to an extreme pose, expression, or a worn accessory,
introducing large errors in tracking. As a result, head tracks produced by conventional approaches
are fundamentally limited by their incompleteness and correspondence instability.

To improve robustness of correspondence search, one path forward is to extract and match repre-
sentations densely in each image pixel instead of detection and alignment of isolated landmarks.
Recent image-based vision foundational models (VFMs) are one suitable source of such dense rep-
resentations known to be effective in many vision tasks (Dutt et al., 2024; Siméoni et al., 2025).
As human heads constitute a visual category with high structural similarity across instances, it is
natural to expect such representations defined at unambiguous facial features to be nearly view- and
time-invariant, facilitating exact correspondence search.

Building on these insights, we propose DenseMarks, a new learned representation for human heads
designed to (1) enable high-quality dense correspondences for complete human heads, including ir-
regular features such as hair or accessories, (2) achieve robust tracking under challenging conditions
such as strong occlusions, and (3) produce a structured, interpretable, and smooth canonical latent
space for exploration and interaction. We use a ViT neural backbone to predict dense per-pixel repre-
sentations within the head mask of an input image; leveraging powerful pre-trained VFMs (Siméoni
et al., 2025). These representations are projected into a shared 3D space, reducing correspondence
to nearest-neighbor search and enabling intuitive interactions (e.g., click-based retrieval). To train
without ground-truth dense correspondences, we construct a diverse dataset of human head videos
with 2D point tracks from an off-the-shelf tracker (Karaev et al., 2024a). We enforce fine-grained
cross-subject consistency by optimizing a contrastive loss on matched pairs, and integrate semantic
and smoothness constraints to structure the latent space and improve interpretability.

We benchmark against pre-trained VFM variants (Siméoni et al., 2025; Khirodkar et al., 2024; Yue
et al., 2024), with assessment focused on dense image warping and geometric consistency measures.

2 RELATED WORK

Face, Head, and Full Body Tracking. Commonly, tracking humans in videos involves extracting
relevant information for the estimation and alignment of their pose and shape. In the simplest form,
this is achieved by predicting locations of characteristic landmark points with fixed semantics (Sag-
onas et al., 2013; Moon et al., 2020; Jin et al., 2020) using learned models (Bulat & Tzimiropoulos,
2017; Lugaresi et al., 2019a; Cao et al., 2019; Simon et al., 2017; Li et al., 2022). Ease of collecting
annotations and efficiency of landmark detectors have made landmarks essential in practical tracker
design, enabling initial rigid alignment (Qian, 2024; Qian et al., 2024; Grassal et al., 2021; Bogo
et al., 2016; Kanazawa et al., 2018; Kocabas et al., 2020). However, relying on a finite number
of isolated, sparse landmarks can compromise robustness, commonly requiring regularization or
postprocessing such as temporal smoothing (Qian, 2024; Zielonka et al., 2022; Zheng et al., 2023a;
Huang et al., 2022; Jiang et al., 2022).

Many methods for estimating and tracking parametric models of faces and bodies (3DMMs (Blanz &
Vetter, 1999; Zhu et al., 2017; Li et al., 2017b; Zhang et al., 2023b; Romero et al., 2017; Loper et al.,
2015; Dai et al., 2020)) are based on the analysis-by-synthesis paradigm (Blanz & Vetter, 1999; Zhu
et al., 2017; Feng et al., 2021; Zielonka et al., 2022; Daněček et al., 2022) that involves a combination
of rigid alignment and optimization of denser losses. While offering higher geometric completeness,
such models rely on a simple mesh topology and a limited range of geometries captured by a PCA
basis (Abdi & Williams, 2010; Jolliffe, 2011); for fitting, they commonly depend on prior landmarks
estimation and optimize highly non-convex (e.g., photometric or depth) losses.

Our method naturally complements 3DMM-based head trackers by supplying dense, robust semantic
correspondences for complete heads and includes features not trivially captured by landmarks or
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parametric models (e.g., hair). This idea is similar to works that learn to predict texture coordinates
for alignment of parametric face (Feng et al., 2018; Giebenhain et al., 2025) and body (Güler et al.,
2018; Ianina et al., 2022) models, or compute multi-dimensional features, normals, and depth using
foundation models optimized for the human domain (Khirodkar et al., 2024).

Canonical Space Learning. Our method represents input samples by learned embeddings in a
shared (canonical) space. The idea of using canonical representations for category-level object local-
ization and pose estimation was pioneered by Normalized Object Coordinate Space (NOCS) (Wang
et al., 2019) and subsequently extended to handle sparse views, lack of dense labels, or multiple cat-
egories (Min et al., 2023; Xu et al., 2024; Krishnan et al., 2024). However, directly learning NOCS
representations for 3D heads is difficult as large collections of 3D models are absent in the human
head domain.

Shape correspondence task can be formulated as a problem of finding a mapping between spaces
of functions defined on shapes (Ovsjanikov et al., 2012; Rodolà et al., 2017). Existing methods
applying such functional maps for finding full-body correspondences (Neverova et al., 2020; Ianina
et al., 2022) require fitting parametric 3D models for supervision. To enable modeling parts of
human heads absent from parametric models, we opted not to use these in our training.

The idea of using canonical space is widespread in 3D-aware per-scene human fitting (Gafni et al.,
2021; Park et al., 2021) and human generative modeling EG3D (Chan et al., 2022; Dong et al.,
2023). Similarly, several works focus on producing unsupervised shape correspondences, in part
based on functional maps (Halimi et al., 2019; Cao & Bernard, 2022; Cao et al., 2023; Liu et al.,
2025).

Embeddings from Foundation Models. Recent progress in ViT-based VFMs (Caron et al., 2021;
Oquab et al., 2023; Siméoni et al., 2025; Weinzaepfel et al., 2022; Dosovitskiy et al., 2020; Han
et al., 2022) and evidence of their emerging understanding of 3D world (Zhang et al., 2024b; Sucar
et al., 2025; Chen et al., 2025a) has fueled efforts to improve their 3D-awareness through fine-
tuning (Yue et al., 2024; Zhang et al., 2024a). Similarly, directly training siamese ViT networks on
pairs of stereo views has been shown to efficiently establish dense correspondences (Wang et al.,
2024; Leroy et al., 2024; Smart et al., 2024; Chen et al., 2025b), when prompted with 2+ images.

Another class of VFMs, pre-trained diffusion models (e.g., Stable Diffusion (Rombach et al., 2021)),
allow inferring semantic correspondences from their image-based representations (Hedlin et al.,
2023; Zhang et al., 2023a; Zhu et al., 2024) that could be distilled into dense surface correspon-
dences across objects of arbitrary categories (Dutt et al., 2024). In our experiments, we found the
correspondences arising from point tracking (cf. next paragraph) more reliable than those arising
from pretrained diffusion models. Our method benefits from integrating VFMs as a feature extractor;
in contrast to generic pre-trained deep features correlated with visual semantics, our geometry-aware
representations yield an interpretable 3D canonical space.

Point Tracking. The advent of talking heads datasets (Wang et al., 2021; Zhu et al., 2022; Ephrat
et al., 2018) and point trackers calls for approaches to tracking faces and bodies, free of an underly-
ing coarse parametric model. In particular, in a line of works starting from PIPs (Harley et al., 2022),
deep learning based methods are proposed to track any queried point along the video. Progress in
the area of point trackers has been additionally accelerated by the appearance of suitable bench-
marks, such as Tap-Vid (Doersch et al., 2022) and PointOdyssey (Zheng et al., 2023b). A series
of consequent improvements of track-any-point algorithms (Doersch et al., 2023; Li et al., 2024;
Cho et al., 2024) led to the emerging branch of CoTracker works (Karaev et al., 2024b;a), as well
as BootsTAP (Doersch et al., 2024). Similarly, a few methods rely on foundation models, such as
DINO-tracker (Tumanyan et al., 2024) for tracking any point or VGGT (Wang et al., 2025) that uses
point tracks for 3D understanding. Applications of modern algorithmic ideas for point tracking also
led to the appearance of simultaneous reconstruction and tracking methods such as Dynamic 3D
Gaussians (Luiten et al., 2024), St4rTrack (Feng et al., 2025), or Tracks-to-4D (Kasten et al., 2024).
For the downstream tasks of human tracking, similar to our method, some of the recent approaches
also make use of point tracking (Kim et al., 2025; Taubner et al., 2024) or motion data (Shin et al.,
2024).
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Figure 2: To learn our representation, we train an embedder network ϕθ in a siamese fashion. By
feeding two image frames from a talking head video of the same person into the embedder inde-
pendently, we obtain DenseMarks embeddings I1C , I

2
C . These embeddings correspond to canonical

locations in the unit cube (DenseMarks space). This cube is discretized in advance, and a learn-
able matrix E of latent features represents D-dimensional vectors, storing semantic info of each of
the voxel grid locations. To transform each of the estimated cube locations into semantic features
Feat1,Feat2, we query E at locations I1C , I2C via trilinear interpolation (TriLerp). For the images
I1, I2, we have a set of pair matches K1

gt,K
2
gt, estimated by an off-the-shelf point tracker (Karaev

et al., 2024a). We apply contrastive loss (Radford et al., 2021) to the semantic features of images in
these locations. This way, the cube locations corresponding to the same semantic feature are pushed
closer together. Additionally, we estimate region masks S1, S2 by a semantic network Sξ and apply
segmentation loss.

3 METHOD

In this section, we define the representation (section 3.1) and the way a [2D image → embeddings]
estimator is trained (section 3.2). The method overview is illustrated in Figure 2.

3.1 DENSEMARKS SPACE

The architecture of our pipeline consists of two key components: the canonical space where the
embeddings reside, and the embedder, the task of which is to map an image into this space. The
requirements that we set for the space are: (1) interpretable and queryable (the user can query a
point in the space by looking at a typical arrangement of regions in it); (2) structured (regions are
meaningful and don’t overlap); (3) complete (contains the whole head, including the parts that are
not trivial to annotate, such as hair and accessories); (4) smooth and continuous (images will be
mapped to a continuous manifold of the space, with regions not getting abrupt and intersecting each
other).

Additionally, we know that human heads are 3D objects. Even though UV (i.e., 2D canonical space)
is a typical surface representation for heads, it’s not the most precise representation due to modeling
a complete head, including, e.g., hair and accessories, being not trivial in UV space and featuring
seams (Ianina et al., 2022). Because of this, we decide to represent our canonical space as a unit
cube in 3D and make the canonical embeddings the locations in this cube.

The interpretability requirement (1) and structure requirement (2) are enforced via landmark and
segmentation losses, defined further in section 3.2.

The completeness requirement (3) is enforced with the way the embedder is supervised (also see sec-
tion 3.2). For that purpose, we add a latent grid on top of the cube of a given resolutionNd×Nd×Nd

and attach aD-dimensional latent feature to each element of the voxel grid, thus forming a learnable
matrix Eraw ∈ R(Nd)

3×D. Each latent feature contains a highly-dimensional info about the given
location in the canonical space.
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Finally, to promote the smoothness requirement (4), we apply spatial smoothness to the matrix
Eraw via a 3D Gaussian filter with a strength of σ, thus creating a latent feature grid E =
gaussian filter 3D(Eraw, σ). This encourages the predicted embeddings from the embedder to be
smoother, since the semantics of the close points in the cube will be similar and smoothly changing.

Note that the use of matrix E is inspired by the similar matrix of latent features used in functional
maps, e.g., in CSE (Neverova et al., 2020), that is typically smoothed via a Laplace-Beltrami op-
erator (Lévy, 2006). From a different standpoint, the operation of querying the space can also be
seen as an attention operation, where the locations are queries (same as keys in this context) and the
latent grid features are values. By aggregating the values at real-valued query locations with trilinear
interpolation weights, we obtain the resulting semantic features at a given location.

3.2 EMBEDDER TRAINING

Our goal is to learn a monocular embedder ψθ : I → IC , where I ∈ RH×W×3 is an input RGB
image and IC ∈ RH×W×3 is the predicted canonical embeddings for each pixel.

The network consists of a Vision Transformer backbone that predicts a feature map, which is further
gradually upscaled through a sequence of convolutional layers to match the input resolution.

To train this network, at each training step, we pass two input images I1, I2 ∈ RH×W×3 through the
embedder ψθ and obtain corresponding predictions I1C = ψθ(I1), I

2
C = ψθ(I2), both in RH×W×3.

For these two images, we assume having a number of ground truth pixel correspondences be-
tween them (K1

gt,K
2
gt) =

(
{(i11, j11), . . . , (i1P , j1P )}, {(i21, j21), . . . , (i2P , j2P )}

)
. These correspon-

dences could be coming from any off-the-shelf pairwise matching algorithm. In our case, we obtain
them from a point tracker inferred over individual talking head videos, as we found best in prac-
tice. Because of this, in our training procedure, images I1 and I2 are always coming from the same
talking head video, but can represent arbitrarily close or far frames of the same video.

Embeddings I1C = ψθ(I1) and I2C = ψθ(I2) point to some real-valued locations in the canon-
ical space. For each of those, we extract their corresponding D-dimensional semantic features
via trilinear interpolation (Trilerp) (Bourke, 1999): I1feat ∈ RH×W×D, I2feat ∈ RH×W×D, where
(I1feat)ij = Trilerp(E, (I1C)ij), (I

2
feat)ij = Trilerp(E, (I2C)ij).

In order to supervise our network, we encourage the features I1feat, I
2
feat to be close at the posi-

tions, defined by ground truth correspondences (K1
gt,K

2
gt), and far for other pairs of points. More

formally, we first extract semantic features at the integer spatial positions of the ground truth cor-
respondences, yielding tensors of queried features Feat1,Feat2 ∈ RP×D, Feat1p = I1feat[(K

1
gt)p],

Feat2p = I2feat[(K
2
gt)p]. To promote the corresponding features of the first and second image to be

close (positive pairs) and the others to be far (negative pairs), we construct a contrastive loss similar
to CLIP Loss (Radford et al., 2021) that requires the pairwise matrix of cosine distances to be close
to an identity matrix:

Lcontr
θ,E (Feat1,Feat2) =

∥∥(norm(Feat1))(norm(Feat1))T − I
∥∥
F
,

where norm is a row-wise normalization operation.

Additionally, we apply a number of regularizations. To reduce ambiguity of the learned canon-
ical space, we impose the locations of standard 300W Sagonas et al. (2013) format face land-
marks to be close to the predefined locations in the cube. This is implemented via inferring an
off-the-shelf landmark predictor on images I1, I2, thus obtaining ground truth landmark locations
(l11, . . . , l

1
68), (l

2
1, . . . , l

2
68), and anchoring them to the predefined locations Lk ∈ R3, k = 1, . . . , 68

in the unit cube:

Llmks
θ (IC | l) =

68∑
k=1

∣∣I1C [lk]− Lk

∣∣
To further correlate the predicted canonical embeddings with image semantics, we add a trainable
segmentation head Sξ, consisting of a single conv1x1 layer. For each of the images, this head
receives the extracted semantic features (either Feat1 or Feat2) and returns the predicted logits of
probabilities of class regions (face parsing) – either S1 = Sξ(Feat1), or S2 = Sξ(Feat2), both in
RH×W×NS . The segmentation loss expression compares each of the predicted masks S ∈ {S1, S2}
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to the corresponding ground truth mask Sgt ∈ RH×W×NS , obtained by an off-the-shelf face parser:

lsegm(S |Sgt) =
∑
i,j

cross entropy(S[i, j], Sgt[i, j])

The overall loss is as follows:

Lθ,E,ξ(·) = Lcontr
θ,E (Feat1,Feat2)

+ λlmks(l
lmks
θ (I1C | l1) + llmks

θ (I2C | l2))
+ λsegm(lsegm(S1 |S1

gt) + lsegm(S2 |S2
gt))

(1)

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Data. We train our method on CelebV-HQ dataset (Zhu et al., 2022) of 35K in-the-wild talking
head videos of interview style. To obtain ground truth correspondences (K1

gt,K
2
gt), we run Co-

Tracker3 (Karaev et al., 2024a) on these videos. As an input set of points to track, we take the whole
foreground region of the first frame (estimated by GroundedSAM2 (Ren et al., 2024) prompted with
the text “person”) and sample points uniformly in that region (see an example in Fig. 1 (left)).
Videos were discarded if there were either too few tracks found (fewer than 80) or foreground seg-
mentation failed, resulting in 32K videos left. The number of point tracks found did not exceed
400. 100 randomly sampled videos have been held out for the evaluation and used in the results
described below. Each training batch is formed by uniformly sampling two random frames from a
sample video from the constructed annotated dataset. All videos are resized to the (512, 512) res-
olution in advance and fed to the embedder in that resolution. For augmentation, we use random
shift (in [-10%, 10%] range), scale ([-10%, 10%]), and rotation ([-18◦, 18◦]), each with a chance of
50%. Points which are no longer visible after augmentation are no longer accounted in training. For
the landmark loss, we extract 70 manually selected landmarks (full face border, landmarks on eyes,
nose, and mouth) via Mediapipe (Lugaresi et al., 2019b). Ground truth segmentation masks are ob-
tained via FaRL (Zheng et al., 2022) and are further refined on the borders via face-parsing (Jonathan
Dinu, 2025; Xie et al., 2021), which works better in practice on non-face regions of the head.

Architecture and training. To make use of strong pretraining, we initialize the embedder with a
pre-trained DINOv3 (Siméoni et al., 2025) checkpoint and add DPT head (Ranftl et al., 2021) to
output an image of the same spatial resolution as the input (512× 512). Matrix E is initialized from
a Gaussian distribution N (0, 1). We use λsegm = 1 for the segmentation loss and λlmks = 50 for
the landmark loss. For optimization, we employ the AdamW (Loshchilov, 2017) optimizer with a
learning rate 5 · 10−5 for the backbone of ϕθ, learning rate of 10−4 for DPT head, and 10−3 for the
latent features E. The schedule for all learning rates was cosine annealing with an overall number
of steps of 140K and a warmup for 2’800 steps. Weight decay of 10−4 was applied to the network
parameters θ and ξ, except for normalization layers. The whole pipeline is trained for 140k training
steps using 8 pairs of images per batch on a single NVIDIA RTX 3090 Ti GPU for 1.5 days.

4.2 RESULTS

Point querying. The requirement of the canonical space is that the same semantic points will
have a fixed location in the cube, regardless of the person’s identity. We test this on a number of
points that have distinct semantics: points on hair, ear centers, forehead center, eyebrow corners.
To find each semantic point, we manually annotated 7 sample images from CelebV-HQ, inferred
the trained embedder, and averaged predicted locations in the cube for each annotated point. We
use the obtained location as a reference to find the nearest neighbor in the other image among their
predicted embeddings. Results are demonstrated in Fig. 3. There, we compare against state-of-
the-art dense feature extractors, the embeddings of which provide rich semantic information for a
neighbor search: DINOv3 (Siméoni et al., 2025) (embedding dimension: 768), Sapiens (Khirodkar
et al., 2024) (1280), Diffusion Hyperfeatures (Luo et al., 2023) (384), Fit3D (Yue et al., 2024) (768).
For these methods, semantic points are also estimated by averaging predicted embeddings. Despite
using a significantly smaller vector dimension (3) to store semantics in the embedding, our method
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Sapiens (1280) DHFeats (384) DINOv3 (768) Ours (3) Sapiens (1280) DHFeats (384) DINOv3 (768) Ours (3)

Figure 3: Point querying. We select a specific point on a few images and find the reference embed-
ding by averaging the embeddings predicted by each of the models in its location. Points: red = on
the left side of long hair region, green = center of the right ear, orange = center of the left ear, blue
= forehead center, yellow = left eyebrow corner. We indicate the embedding dimension in brackets.

Figure 4: Semantic regions on head images can be located via selecting corresponding volumetric
regions in the canonical space. Blue: forehead center, green and orange: ears, yellow: skin near the
left eyebrow corner.

Source Target DinoV3 (768) Fit3D (768) Sapiens (1280) DHFeats (384) Ours (3)

Figure 5: Dense warping. Here, we copy pixels from source to target based on the target→source
nearest neighbors search in the space of embeddings, predicted by each model (even rows). For
clarity, mapping of meshgrid-like coordinates, blended with RGB, is shown additionally (odd rows).
Even though deep feature extractors provide valuable matches, they are either matching colors, not
semantics (Sapiens (Khirodkar et al., 2024), DHFeats (Luo et al., 2023)), or feature significant arti-
facts (DinoV3 (Siméoni et al., 2025), Fit3D (Yue et al., 2024)), thus being less reliable for matching.
Numbers in () for each method correspond to the dimension of the embedding.

can find a corresponding region for challenging views better. Note that our method is also robust to
strong face or head occlusions.
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Table 1: Quantitative comparison. On same-person pairs of images from Nersemble (Kirschstein
et al., 2023), we evaluate the quality of correspondences that arise from matching nearest neighbor
embeddings. Similarly, on cross-person pairs, we evaluate the consistency and identity preservation.

Same-person Cross-person
Matching quality ArcFace ↑ Met3R ↓MAE ↓ RMSE ↓

DINOv3 (Siméoni et al., 2025) 7.6 12.69 0.266 0.460
Fit3D (Yue et al., 2024) 12.75 21.83 0.236 0.558
Hyperfeatures (Luo et al., 2023) 8.26 13.29 0.329 0.454
Sapiens (Khirodkar et al., 2024) 14.88 24.12 0.167 0.595
Ours 3.68 5.9 0.384 0.388

Video Frame Head Tracker Head Tracker + Ours→ Video Frame Head Tracker Head Tracker + Ours→

Figure 6: Monocular tracking. We evaluate our method on downstream application of applying
a state-of-the-art off-the-shelf head tracker (Qian, 2024) to track a 3D Morphable Model template
(FLAME (Li et al., 2017a)) over a monocular video. By default, this tracker relies on standard 68
face landmarks and photometric loss. Estimating a DenseMarks texture of FLAME and applying an
additional photometric loss to match it with estimated embeddings greatly improves the robustness
of the tracker, especially for extreme poses.

Figure 7: Stereo Reconstruction. We triangulate
2-view and 3-view correspondences of our rep-
resentations using known camera parameters in
Nersemble (Kirschstein et al., 2023).

Region selection. In Fig. 4, we demonstrate
how the same volumetric region in the canoni-
cal space is mapped onto images of people. The
regions are initially selected on 7 random im-
ages manually and averaged (via a voting pro-
cedure) in the cube space.

Dense warping. To demonstrate the seman-
tic consistency of embeddings predicted for the
whole image, not only specific points or re-
gions, we demonstrate the warping by embed-
dings in Fig. 5, evaluated on pairs of different people from the Nersemble dataset (Kirschstein et al.,
2023). For each target image pixel, we replace its color with the color of the nearest neighbor by
embedding in the source. We expect the warping to be semantically meaningful and smooth. It is
observed that when we match nearest neighbors by Diffusion Hyperfeatures and especially Sapiens
embeddings, the matches turn out to be based on the color similarity, not the semantic similarity.
DINOv3 and Fit3D appear more semantically meaningful but often feature artifacts, making the cor-
respondences imprecise, as best observed in the mapping rows in the figure. To evaluate the quality
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of the mapping, we estimate face recognition similarity based on ArcFace (Deng et al., 2019) be-
tween the source image and the mapping result, as well as the view-consistency metric Met3R (Asim
et al., 2025), and show the results in Table 1.

Geometric consistency. To assess qualitatively and quantitatively the precision of the estimated cor-
respondences through our embeddings, we repeat the Dense Warping experiment in a similar way
for the (source, target) pairs of images of the same person, not different people, repeated over various
people from the Nersemble dataset. In Table 1, we demonstrate the evaluation of the correctness of
the estimated correspondences between source and target, averaged over ten people from Nersem-
ble. As a source of ground truth correspondences, we estimate a complete head mesh from all 16
cameras via GS2Mesh (Wolf et al., 2024) and sample 1K random mesh vertices. The embeddings
are evaluated in the projected locations of these vertices.

Ours w/o lmk loss Ours w/o segm loss Ours full

Figure 8: Removing the landmark or segmenta-
tion loss makes region finding much less reliable.
Blue: forehead center, green and orange: ears,
yellow: skin near the left eyebrow corner.

Losses ablation. Even though the network can
learn without introduced constraints on land-
mark locations in the cube and segmentation
loss, we demonstrate that the finding charac-
teristic points and regions becomes more prob-
lematic in Fig. 8. This is explained by a less
semantically constrained canonical space.

Monocular tracking. As an example
application of our method, we take a
highly-performing off-the-shelf head tracker,
VHAP (Qian, 2024), which supports estima-
tion of the FLAME parametric head model (Li
et al., 2017a). It relies on a standard 300-W
set of 68 sparse landmarks (Sagonas et al.,
2013) for rigid alignment of the template and
optimizes for the shape, pose, and expression
parameters of FLAME, through estimating
RGB texture in the FLAME UV space and
applying photometric loss. Even though VHAP
excels in multi-view settings, monocular
videos can remain challenging due to poten-
tially failing landmark detection, occlusions,
and extreme viewpoints. To aid the tracker in
these situations, we add another photometric
loss that is based on estimating a 3-dimensional
UV texture of DenseMarks embeddings that is compared to the embeddings predicted by the trained
embedder for each video frame independently. We run tracking on in-the-wild monocular videos
with different challenging conditions such as strong/fast head rotation, severe hair/accessories
occlusions, very close/far cameras. The results are demonstrated in Figure 6. Our method improves
robustness the most in cases of extreme poses and yields better alignment in challenging regions,
such as neck and ears. We demonstrate the results of tracking over the complete videos in the
Supplementary Video.

Stereo Reconstruction. In Fig. 7, we demonstrate that triangulating 2+ images can be done purely
using embeddings from our model, on the example of a sample from Nersemble with known camera
poses and intrinsics. This way, we demonstrate the capabilities of [multi-view-]stereo and dense
estimation.

5 CONCLUSION

We propose a novel representation for human head images and an embedder for dense estimation.
The resulting low-dimensional (3D) embeddings are consistent across views and subjects, enabling
reliable matching of challenging regions like hair. Despite their compactness, they outperform high-
dimensional features from foundation models in geometry-aware tasks like tracking, while benefit-
ing from VFM pretraining. Future work could extend our approach to full bodies and other domains,
which would be anticipated with the appearance of publicly available high-resolution data collec-
tions.
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Claire Roberts, Andrea Vedaldi, Jamie Tolan, John Brandt, Camille Couprie, Julien Mairal, Hervé
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A APPENDIX

A.1 ADDITIONAL ABLATIONS

In this section, we further examine design choices for network training. We argue that the use of
a 3D canonical space is crucial for both geometric consistency and accurate correspondences. To
test this, we trained a network to directly predict semantic features while excluding the prediction
of coordinates in the canonical space. Consequently, ϕθ predicts I1C , I

2
C ∈ RH×W×D. Note that

without the canonical space, the network loses geometric consistency, as illustrated by the even
rows in Figure 9. We further quantify this in Table 2. Even without DINOv3 pretraining, our ap-
proach achieves better results than the strongest baseline, highlighting the importance of the canon-
ical space. Moreover, without the canonical space, the network embeddings cannot be reliably used
for point querying or region localization, as the model may map semantically different regions close
together in the embedding space. This effect is illustrated in Figure 10, where the forehead center
and ears are mapped to unrelated semantic regions. We also evaluate the method when omitting
pretrained weights. While training from scratch still yields better correspondences than the base-
lines, performance improves when initializing from the DINOv3 checkpoint (see Figures 9, 10 and
Table 2). Overall, our findings indicate that using a canonical space as a bottleneck is essential for
maintaining geometric consistency and for enabling reliable region localization.

Table 2: Ablation w.r.t. DINOv3 pretraining and canonical space. On same-person image pairs
from Nersemble (Kirschstein et al., 2023), we evaluate the quality of correspondences obtained by
matching nearest-neighbor embeddings. Utilizing the canonical space improves the accuracy of
these matches. Additionally, we report results for our strongest baseline, DINOv3, for the reference.

Same-person
MAE ↓ RMSE ↓

DINOv3 7.6 12.69
w/o canonical space 6.35 10.20
w/o pretrain 5.62 8.98
Ours 3.68 5.89

A.2 POSE/LIGHT CONSISTENCY

In this section, we evaluate how well the canonical coordinates are aligned under (1) changes in
lighting and (2) changes in pose. In Figure 12, we select several in-the-wild images of the same
person under different lighting conditions and perform dense warping. The resulting embeddings in
the canonical space remain consistent, despite the absence of any lighting or color-change augmen-
tations during training. In Figure 11, we visualize an ear surface in the canonical space for the same
person from the Nersemble dataset but across different poses. Interestingly, our canonical space
represents the ear as a volumetric object. Side views reveal the interior of the ear, while front views
show the outer regions. As a result, the ear surfaces are embedded within each other in a consistent
order.

A.3 STEREO RECONSTRUCTION

In this section, we provide more detailed explanation of how our stereo reconstruction application
is implemented. For each of the input images, equipped with known camera poses and intrinsics,
we process DenseMarks embeddings stored as UVW maps, all of the same size as the input images.
The multi-view triangulation approach implements a Direct Linear Transform (DLT) method for 3D
point reconstruction from UVW canonical coordinate correspondences. The implementation oper-
ates on UVW maps downsampled by a factor of 4.0 and uses a minimum track length of 2 views, sig-
nificantly less conservative than typical multi-view stereo approaches. The filtering process applies
a UVW consistency check with the tolerance parameter of 0.05 (doubled to 0.1 for track validation),
followed by a permissive reprojection error threshold of 10 pixels, which accommodates potential
inaccuracies in camera calibration or UVW estimation. This parameter configuration slightly pri-
oritizes reconstruction density over strict geometric accuracy. The same configuration is used for
all samples and for any number of input views. In Fig. TODO, we demonstrate the quality of our
multi-view reconstruction in various camera configurations and for different samples.
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Source Target Ours w/o pretrain Ours w/o
canonical space

Ours

Figure 9: Dense warping. Pixels are copied from the source to the target based on a target→source
nearest-neighbor search in the embedding space predicted by each model (even rows). For clarity,
we additionally show the mapping of meshgrid-like coordinates blended with RGB (odd rows).
Using a 3D canonical space provides better geometric awareness, as evidenced by the consistency
of the blended images. Additionally, usage of pretraining further boost quality.
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Ours w/o canonical space Ours w/o pretrain Ours

Figure 10: Blue: forehead center, green and orange: ears, yellow: skin near the left eyebrow corner.
The canonical space enables a more reliable localization of regions (see the spots in the first column).
We also benefit from using pretrained weights that already encode rich semantic information (such
as DINOv3).

Source Target Ours Source Target Ours

Figure 12: Predicted canonical coordinates are robust to lighting changes. Ours: result of
target→source dense warping.
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Figure 11: For each pose (colored images on the left), we visualize the surface corresponding to
the ear region in our canonical space from four viewpoints: front view (middle column, top); back
view (last column, top); left side view (middle column, bottom); and top view (last column, bottom).
Neighboring pixels are used for point triangulation, and mild smoothing is applied for improved
visualization. Note that different surfaces are mapped differently: the blue image shows the ear’s
interior, while the green image shows its exterior.
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